You Should Know Something about 1762-34-1

From this literature《Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers》,we know some information about this compound(1762-34-1)SDS of cas: 1762-34-1, but this is not all information, there are many literatures related to this compound(1762-34-1).

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ) is researched.SDS of cas: 1762-34-1.Pan, Yao; Zhang, Nan; Liu, Chun-Hua; Fan, Shilu; Guo, Song; Zhang, Zhi-Ming; Zhu, Yuan-Yuan published the article 《Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers》 about this compound( cas:1762-34-1 ) in ACS Catalysis. Keywords: merging photocatalyst Transition Metal catalyst flexible polymer. Let’s learn more about this compound (cas:1762-34-1).

The merger of photocatalysis and transition-metal catalysis is of particular interest to develop useful and challenging synthetic methodologies. The catalytic activities of conventional dual-catalytic systems, however, are limited by the low synergistic efficiency between discrete catalytic centers due to their long average distance in solution Herein we carefully decorated Ir(III) photosensitizers and Ni(II) transition-metal catalyst into flexible polymers to afford two polymer-supported dual catalysts (P1-Ni and P2-Ni). These polyelectrolyte-type metallopolymers assembled into spherical polymer particles in some polar solvents. Their unique mol. and assembled structure contributed to shortening the distance between catalytic centers and increasing the local catalysts′ concentration within the catalyst, thereby greatly facilitating their electron, energy, and organic radical transfers during the catalytic cycles. The enhanced energy interaction and matched redox potential between two catalytic centers within the polymer were confirmed by steady- and transient-state luminescent spectra and cyclic voltammetry. These features enable them in catalyzing challenging organic transformations that involve efficiently incorporated photocatalytic and transition-metal catalytic cycles. We demonstrated that these two catalysts were highly effective in catalyzing C-S cross-coupling, C-O functionalized, C-N cross-coupling, and C-C cross-coupling reactions with broad substrate scopes and low catalyst loadings with turnover numbers of ~3100, ~1500, ~1400, and ~500, resp. This work provides a general methodol. to merge photosensitizer and transition-metal catalyst in a flexible polymer for significantly boosting the catalytic activity.

From this literature《Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers》,we know some information about this compound(1762-34-1)SDS of cas: 1762-34-1, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Introduction of a new synthetic route about 1762-34-1

From this literature《Syntheses, molecular structures, and spectroscopic properties of manganese(II)/(III) complexes with tetraphenylimidodiphosphinato and bi-pyridine or salicylaldehyde ligands》,we know some information about this compound(1762-34-1)COA of Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

Qian, Zhe; Zhang, Ying; Jia, Ai-Quan; Shi, Hua-Tian; Zhang, Qian-Feng published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).COA of Formula: C12H12N2. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Treatment of [Mn(CH3COO)2·4H2O] with two equivalent of K[N(Ph2PO)2] in the presence of one equivalent of 2,2′-bipyridine (bpy) or 5,5′-dimethyl-2,2′-bipyridine(dmbpy) in ethanol gave the mono-nuclear manganese(II) complexes [Mn{η1-O-N(Ph2PO)2}{N(Ph2PO)2}(EtOH)(bpy)] (1) and [Mn{N(Ph2PO)2}2(dmbpy)] (2), resp. Interaction of [Mn(CH3COO)2·4H2O], K[N(Ph2PO)2] and salicylaldehyde or 5-chlorosalicylaldehyde or 3,5-dibromosalicylaldehyde in the presence of triethylamine in methanol gave the bi-nuclear manganese(II) complexes [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-Sal)2(MeOH)2] (3) and [Mn2{N(Ph2PO)2}2(μ,η2-O,O’-5-Cl-Sal)2(MeOH)2] (4), and a tetra-nuclear manganese(II)/(III) complex [Mn4{N(Ph2PO)2}2(μ,η2-O,O’-3,5-Br2-Sal’)2(MeOH)4(μ-OMe)2(μ3-OMe)2] (5), resp. All complexes were characterized by IR and UV spectroscopy, their mol. structures were unambiguously established by single crystal x-ray diffraction. The electrochem. properties of complexes 1-5 were also studied.

From this literature《Syntheses, molecular structures, and spectroscopic properties of manganese(II)/(III) complexes with tetraphenylimidodiphosphinato and bi-pyridine or salicylaldehyde ligands》,we know some information about this compound(1762-34-1)COA of Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Simple exploration of 1762-34-1

From this literature《Synthesis and characterization of Lanthanum(III) complexes containing 4,4,4-trifluoro-1-(naphthalen-2yl)butane-1,3-dionate》,we know some information about this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

Mautner, Franz A.; Bierbaumer, Florian; Gyurkac, Marcell; Fischer, Roland C.; Torvisco, Ana; Massoud, Salah S.; Vicente, Ramon published an article about the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1,SMILESS:CC1=CN=C(C=C1)C1=NC=C(C)C=C1 ).Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be classified according to the number of heteroatoms or the size of the ring. The authors also want to convey more information about this compound (cas:1762-34-1) through the article.

Seven La(III) complexes with the β-diketonate anion 4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato(1-) (ntfa) have been synthesized, namely: [La(ntfa)3(MeOH)3] (1a), [La(ntfa)3(H2O)2(EtOH)](EtOH) (1b), [La(ntfa)3(bipy)2] (2), [La(ntfa)3(Me2bipy)] (3), [La(ntfa)3(terpy)] (4), (NEt4)[La(ntfa)4] (5) and [La(ntfa)4Na(H2O)(EtOH)(Methyl-β-naphthylketone)] (6), where bipy = bipyridine, Me2bipy = 5,5′-dimethyl-bipyridine, terpy = terpyridine, NEt4+ = tetraethylammonium ion and structurally characterized. The tris-β-diketonate compounds 1a,b, 2-4 form neutral monomeric complexes with C. N. nine for 1a, 1b and 4, eight for 3, and ten in case of 2. The tetrakis-β-diketonato complexes 5 and 6 have coordination number eight.

From this literature《Synthesis and characterization of Lanthanum(III) complexes containing 4,4,4-trifluoro-1-(naphthalen-2yl)butane-1,3-dionate》,we know some information about this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Get Up to Speed Quickly on Emerging Topics: 1762-34-1

From this literature《Two novel Sm(III) complexes with different aromatic carboxylic acid ligands: Synthesis, crystal structures, luminescence and thermal properties》,we know some information about this compound(1762-34-1)COA of Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Two novel Sm(III) complexes with different aromatic carboxylic acid ligands: Synthesis, crystal structures, luminescence and thermal properties, published in 2019-01-15, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, COA of Formula: C12H12N2.

Two novel Sm(III) complexes, [Sm(3,4-DMBA)3(3,4-DMHBA)(5,5′-DM-2,2′-bipy)]2 (1), [Sm(3-MOBA)3(5,5′-DM-2,2′-bipy)]2 (2) (3,4-dimethylbenzoic acid = 3,4-DMHBA, 3-methoxybenzoic acid = 3-MOHBA and 5,5′-dimethyl-2,2′-bipyridine = 5,5′-DM-2,2′-bipy), were successfully synthesized and assembled. The crystal structures were determined by single crystal x-ray diffraction. Two complexes were characterized by the elemental anal., IR, powder x-ray diffraction, thermal gravimetric technol. Because of the different ligands, the structures of the two complexes are very different, especially the structure of the complex 1. Each central Sm(III) ion of complex 1 was coordinated by three deprotonated 3,4-DMBA-,one unprotonated 3,4-DMHBA and one 5,5′-DM-2,2′-bipy, which has rarely been reported before. However each central Sm(III) ion of complex 2 was only coordinated via three deprotonated 3-MOBA- and one 5,5′-DM-2,2′-bipy. In addition, the thermal decomposition mechanism and the three-dimensional IR accumulation spectra of the evolved gas during the thermal decomposition for two complexes were studied by the simultaneous TG/DSC-FTIR technol. What’s more, the luminescence properties of two complexes are also discussed. Finally, the bacteriostatic activities of two complexes were evaluated against Staphlococcus aureus, Escherichia coli and Candida albicans.

From this literature《Two novel Sm(III) complexes with different aromatic carboxylic acid ligands: Synthesis, crystal structures, luminescence and thermal properties》,we know some information about this compound(1762-34-1)COA of Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Why do aromatic interactions matter of compound: 1762-34-1

From this literature《Synthesis, crystal structures and biological activity of palladium(II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and substituted 2,2′-bipyridines》,we know some information about this compound(1762-34-1)Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Synthesis, crystal structures and biological activity of palladium(II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and substituted 2,2′-bipyridines.Formula: C12H12N2.

Reaction of PdCl2 with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol (Hmtzt) in the presence of 5,5′-dimethyl-2,2′-bipyridine (5,5′-dmbipy) and 4,4′-dimethyl-2,2′-bipyridine ligands (4,4′-dmbipy) afforded two new Pd(II) complexes, [Pd(5,5′-dmbipy)(mtzt)2] (1) and [Pd(4,4′-dmbipy)(mtzt)2] (2), resp. The two complexes were thoroughly characterized by elemental anal., UV-vis, 1H NMR, IR, luminescence spectroscopy as well as single-crystal X-ray diffraction. Single-crystal X-ray diffraction revealed that central Pd(II) ions in and are tetra-coordinated, presenting distorted and slightly distorted square planar geometry around Pd atom for and , resp. The luminescence properties of free ligands and complexes 1 and 2, in solution, were investigated. The biol. evaluation of the Pd(II) complexes showed that they exhibited anticancer activities in a dose-dependent manner against human breast cancer cell lines. Also, their in vitro interaction with DNA were analyzed through spectrophotometric, spectrofluorometric, and gel-electrophoresis which shows the intercalation mode of binding. In conclusion, these palladium complexes represent novel anticancer drug mols. for further study.

From this literature《Synthesis, crystal structures and biological activity of palladium(II) complexes with 1-methyl-1H-1,2,3,4-tetrazole-5-thiol and substituted 2,2′-bipyridines》,we know some information about this compound(1762-34-1)Formula: C12H12N2, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Extended knowledge of 1762-34-1

From this literature《Slow magnetic relaxation and luminescence properties in neodymium(III)-4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands》,we know some information about this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Slow magnetic relaxation and luminescence properties in neodymium(III)-4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands, published in 2021, which mentions a compound: 1762-34-1, mainly applied to neodymium trifluoronaphthalenylbutanedionate complex preparation magnetic relaxation luminescence; crystal structure neodymium trifluoronaphthalenylbutanedionate complex, Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine.

Five new eight-coordinated Nd(III) mononuclear complexes with the formulas [Nd(ntfa)3(EtOH)2] (1), [Nd(ntfa)3(phen)] (2), [Nd(ntfa)3(bipy)] (3), [Nd(ntfa)3(5,5′-Me2bipy)] (4) and [Nd(ntfa)3(4,4′-Mt2bipy)] (5), where ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionate, phen = phenanthroline, bipy = 2,2′-dipyridine, 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-dipyridine, and 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-dipyridine, were synthesized and structurally characterized. Magnetic measurements were carried out on complexes 2-5. Dynamic magnetic studies revealed single-mol. magnet (SMM) behavior for complexes 2, 4 and 5 with anisotropy energy barriers and preexponential factors of Ueff = 18 cm-1, τ0 = 2.2 x 10-7 s; Ueff = 31 cm-1, τ0 = 1.0 x 10-9 s and Ueff = 19 cm-1, τ0 = 8.7 x 10-8 s, resp. The ancillary chelating bipyridyl ligands in complexes 2-5 greatly enhance the solid state luminescence emission in the visible and NIR regions through efficient energy transfer from the ligands to the central Nd3+ ion. This study highlights the bifunctionality of the Nd(III) complexes.

From this literature《Slow magnetic relaxation and luminescence properties in neodymium(III)-4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands》,we know some information about this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The effect of the change of synthetic route on the product 1762-34-1

From this literature《The laser-induced potential jump: A method for rapid electron injection into oxidoreductase enzymes》,we know some information about this compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference of 5,5′-Dimethyl-2,2′-bipyridine. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about The laser-induced potential jump: A method for rapid electron injection into oxidoreductase enzymes.

Oxidoreductase enzymes often perform technol. useful chem. transformations using abundant metal cofactors with high efficiency under ambient conditions. The understanding of the catalytic mechanism of these enzymes is, however, highly dependent on the availability of well-characterized and optimized time-resolved anal. techniques. We have developed an approach for rapidly injecting electrons into a catalytic system using a photoactivated nanomaterial in combination with a range of redox mediators to produce a potential jump in solution, which then initiates turnover via electron transfer (ET) to the catalyst. The ET events at the nanomaterial-mediator-catalyst interfaces are, however, highly sensitive to the exptl. conditions such as photon flux, relative concentrations of system components, and pH. Here, we present a systematic optimization of these exptl. parameters for a specific catalytic system, namely, [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1). The developed strategies can, however, be applied in the study of a wide variety of oxidoreductase enzymes. Our potential jump system consists of CdSe/CdS core-shell nanorods as a photosensitizer and a series of substituted bipyridinium salts as mediators with redox potentials in the range from -550 to -670 mV (vs. SHE). With these components, we screened the effect of pH, mediator concentration, protein concentration, photosensitizer concentration, and photon flux on steady-state photoreduction and hydrogen production as well as ET and potential jump efficiency. By manipulating these exptl. conditions, we show the potential of simple modifications to improve the tunability of the potential jump for application to study oxidoreductases.

From this literature《The laser-induced potential jump: A method for rapid electron injection into oxidoreductase enzymes》,we know some information about this compound(1762-34-1)Reference of 5,5′-Dimethyl-2,2′-bipyridine, but this is not all information, there are many literatures related to this compound(1762-34-1).

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

More research is needed about 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)COA of Formula: C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Chemical sensors based on nano-sized lanthanide-grafted periodic mesoporous organosilica hybrid materials, published in 2019, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, COA of Formula: C12H12N2.

In this work authors introduce the use of nano-sized (50-70 nm) lanthanide-grafted periodic mesoporous organosilicas for both metal ion sensing and solvent sensing. For this study a PMO constructed from the N,N-bis(trimethoxysilylpropyl)-2,6-pyridine dicarboxamide linker and tetra-Et orthosilicate (at a 5 : 95 ratio) was employed. This material was grafted with Eu3+, Tb3+ or a mixture of Eu3+-Tb3+ chloride salts to obtain strongly emitting nano-sized luminescence materials. To further enhance the luminescence properties of the materials two different co-ligands were used – 1,10-phenanthroline (phen) and 5,5′-dimethyl-2,2′-dipyridyl (bpy). The luminescence properties of the developed series of hybrid materials were studied in detail in the solid-state and after dispersing in water. The materials were investigated for their use as ion sensors, with the Eu3+ and Tb3+ phen and bpy co-grafted materials showing selective “”turn on”” fluorescence for Pb2+ and Cr3+ ions (at a 10 ppm concentration of the ions). The Eu3+-Tb3+ co-grafted materials showed solvatochromism and could be used as a solvent sensor to distinguish between protic and aprotic solvents.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)COA of Formula: C12H12N2, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Extended knowledge of 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)SDS of cas: 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

The preparation of ester heterocycles mostly uses heteroatoms as nucleophilic sites, which are achieved by intramolecular substitution or addition reactions. Compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ) is researched.SDS of cas: 1762-34-1.Sanchez, Monica L. K.; Wu, Chang-Hao; Adams, Michael W. W.; Dyer, R. Brian published the article 《Optimizing electron transfer from CdSe QDs to hydrogenase for photocatalytic H2 production》 about this compound( cas:1762-34-1 ) in Chemical Communications (Cambridge, United Kingdom). Keywords: cadmium selenide QD electron transfer hydrogenase photocatalytic hydrogen production. Let’s learn more about this compound (cas:1762-34-1).

A series of viologen related redox mediators of varying reduction potential has been characterized and their utility as electron shuttles between CdSe quantum dots and hydrogenase enzyme has been demonstrated. Tuning the mediator LUMO energy optimizes the performance of this hybrid photocatalytic system by balancing electron transfer rates of the shuttle.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)SDS of cas: 1762-34-1, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Final Thoughts on Chemistry for 1762-34-1

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about Reductive Alkylation of Alkenyl Acetates with Alkyl Bromides by Nickel Catalysis, the main research direction is alkenyl acetate bromoalkane nickel catalyst reductive alkylation; alkyl alkene preparation; Alkenes; Alkenylation; Alkylation; Cross-coupling; Nickel.Quality Control of 5,5′-Dimethyl-2,2′-bipyridine.

Herein a cross-electrophile reaction of alkenyl acetates with alkyl bromides was reported. This work has enabled a new method for the synthesis of aliphatic alkenes from alkenyl acetates to be established that was used to add more structural complexity and mol. diversity with enhanced functionality tolerance. The method allows for a gram-scale reaction and modification of biol. active mols., and it affords access to useful building blocks. Preliminary mechanistic studies revealed that the Ni(I) species plays an essential role for the success of the coupling of these two reactivity-mismatched electrophiles.

There is still a lot of research devoted to this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1)Quality Control of 5,5′-Dimethyl-2,2′-bipyridine, and with the development of science, more effects of this compound(1762-34-1) can be discovered.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem