Chemical Research Letters, May 2021. The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. Which mentioned a new discovery about SDS of cas: 2879-20-1, SDS of cas: 2879-20-1
Purpose: To evaluate the antihepatotoxic activity of dihydropyrimidinone derivative linked with 1,4-benzodioxane. Methods: A series of novel dihydropyrimidinone derivatives linked with 1,4-benzodioxane moiety were synthesized in good yield. Modern spectroscopic techniques and elemental analysis were used for the identification of the synthesized compounds. The hepatoprotective properties of compound 2, 4-(4-nitrophenyl)-5-(2,3-dihydro-1,4-benzodioxin-6-ylcarbonyl)-3,4-dihydropyrimidin-2(1H)-one, was evaluated in a carbon tetrachloride (CCl4 )-induced hepatotoxicity rat model. Results: Administration of compound 2 prior to CCl4 exposure produced a dose-dependent decrease in the levels of elevated biochemical parameters compared with the standard drug silymarin. CCl4 induced oxidative stress, increased lipid profile, and decreased high-density lipoprotein (HDL) levels. Compound 2 (20 mg/kg) significantly reduced the lipid profile and significantly improved HDL levels in a dose-dependent manner. CCl4 treatment increased malondialdehyde (MDA) level and decreased nonprotein thiol (NP-SH) and total protein (TP) in liver tissues. Pretreatment of rats with compound 2 (20 mg/kg) decreased MDA level and increased NP-SH and TP in liver tissues. Histopathological examination of liver tissues also confirmed the hepatoprotective activity of compound 2. Conclusion: These results demonstrate the antihepatotoxic activity of compound 2 in CCl4-induced hepatotoxicity model.
If you are interested in SDS of cas: 2879-20-1, you can contact me at any time and look forward to more communication. SDS of cas: 2879-20-1