Archives for Chemistry Experiments of 22013-33-8

In the meantime we’ve collected together some recent articles in this area about 22013-33-8 to whet your appetite. Happy reading!

Electric Literature of 22013-33-8, New Advances in Chemical Research in 2021. Redox catalysis has been broadly utilized in electrochemical synthesis due to its kinetic advantages over direct electrolysis. 22013-33-8, Name is 2,3-Dihydrobenzo[b][1,4]dioxin-6-amine. In a Article, once mentioned of 22013-33-8.

Protein tyrosine phosphatases (PTPases) regulate intracellular signal transduction pathways by controlling the level of tyrosine phosphorylation in cells. These enzymes play an important role in a variety of diseases including type II diabetes and infection by the bacterium Yersinia pestis, which is the causative agent of bubonic plague. This report describes the synthesis, using parallel solution-phase methods, of a library of 104 potential inhibitors of PTPases. The library members are based on the bis(aryl alpha-ketocarboxylic acid) motif that incorporates a carboxylic acid on the central benzene linker. This carboxylic acid was coupled with a variety of different aromatic amines through an amide linkage. The aromatic component of the resulting amides is designed to make contacts with residues that surround the active site of the PTPase. The library was screened against the Yersinia PTPase and PTP1B. Based upon the screening results, four members of the library were selected for further study. These four compounds were evaluated against the Yersinia PTPase, PTP1B, TCPTP, CD45, and LAR. Compound 14 has an IC50 value of 590nM against PTP1B and is a reversible competitive inhibitor. This affinity represents a greater than 120-fold increase in potency over compound 2, the parent structure upon which the library was based. A second inhibitor, compound 12, has an IC50 value of 240nM against the Yersinia PTPase. In general, the selectivity of the inhibitors for PTP1B was good compared to LAR, but modest when compared to TCPTP and CD45.

In the meantime we’ve collected together some recent articles in this area about 22013-33-8 to whet your appetite. Happy reading!

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem