Brief introduction of 1762-34-1

As far as I know, this compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Yamaguchi, Sho; Hashimoto, Shunsuke published the article 《Mechanism of Formic Acid Disproportionation Catalyzed by an Iridium Complex Immobilized on Bipyridine-Periodic Mesoporous Organosilica: A Case Study based on Kinetics Analysis》. Keywords: mesoporous organosilica supported bipyridine periodic pentamethylcyclopentadienyliridium complex preparation catalyst; formic acid disproportionation catalyzed iridium complex immobilized bipyridine kinetics.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Safety of 5,5′-Dimethyl-2,2′-bipyridine. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

This work investigated the kinetics of formic acid (FA) disproportionation using an Ir complex immobilized on bipyridine-periodic mesoporous organosilica (BPy-PMO). The selectivity for methanol (MeOH) is increased using this catalyst compared to conventional homogeneous Ir complexes. This enhanced selectivity is attributed to the retention of H2 and CO2 generated by the competing FA dehydrogenation in PMO mesochannels having a high aspect ratio. However, no direct evidence for this process was previously obtained. The present work clarified the unique catalysis mechanism associated with a PMO catalyst exhibiting higher MeOH selectivity based on a hypothesis that the generation of MeOH via FA hydrogenation is promoted by the confinement of H2 in the PMO pores. The results obtained from the present kinetics study and data regarding H2 diffusion in the PMO pores strongly support this hypothesis.

As far as I know, this compound(1762-34-1)Safety of 5,5′-Dimethyl-2,2′-bipyridine can be applied in many ways, which is helpful for the development of experiments. Therefore many people are doing relevant researches.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem