Share an extended knowledge of a compound : 1762-34-1

In some applications, this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,5′-Dimethyl-2,2′-bipyridine(SMILESS: CC1=CN=C(C=C1)C1=NC=C(C)C=C1,cas:1762-34-1) is researched.Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine. The article 《Tuning of Ionic Second Coordination Sphere in Evolved Rhenium Catalyst for Efficient Visible-Light-Driven CO2 Reduction》 in relation to this compound, is published in ChemSusChem. Let’s take a look at the latest research on this compound (cas:1762-34-1).

Developing an efficient and easy-to-handle strategy in designing catalysts for CO2 reduction into CO by harnessing sunlight is a promising project. Here, a facile strategy was developed to design a Re catalyst modified with an ionic secondary coordination sphere for photoreduction of CO2 to CO by visible light. By adding ionic liquids or tuning a different ionic secondary coordination sphere, it was discovered that an outstanding optical property, other than CO2 absorption ability or the ability to dissociation of chloride anion, is the prerequisite for catalyst design. Accordingly, a novel Re catalyst, {Re[BpyMe(tris(2-hydroxyethyl)amine)](CO)3Cl}Br (Re-THEA), was designed, screened, and resulted in a relative high quantum yield (up to 34 %) for visible-light-induced CO2 reduction with a single-mol. system. DFT calculations, combined with exptl. outcomes, suggested the pendant ionic tris(2-hydroxyethyl)amino (THEA) group on Re-THEA can enhance visible-light absorption, stabilize reaction intermediates, and suppress the Re-Re dimer formation.

In some applications, this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Some scientific research tips on 1762-34-1

In some applications, this compound(1762-34-1)Synthetic Route of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1762-34-1, is researched, Molecular C12H12N2, about Theoretical exploration of 2,2′-bipyridines as electro-active compounds in flow batteries, the main research direction is bipyridine redox potential solubility dissociation constant flow battery.Synthetic Route of C12H12N2.

Compounds from the 2,2′-bipyridine mol. family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2′-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the second deprotonation reaction, and the solubility in aqueous solutions Using exptl. data on a small subset of derivatives, we were able to calibrate our calculations We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the mol. acidity (as expressed in a reduction of the pKa value for the second deprotonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an anal. of the physico-chem. properties of the 156 studied compounds, we down-select five mols. with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential applications as neg. redox-active materials in organic flow batteries.

In some applications, this compound(1762-34-1)Synthetic Route of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Never Underestimate the Influence Of 1762-34-1

In some applications, this compound(1762-34-1)HPLC of Formula: 1762-34-1 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

HPLC of Formula: 1762-34-1. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Construction of lanthanide complexes based on 2,6-dimethylbenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Supramolecular structures, thermodynamic properties and luminescence. Author is Li, Ying-Ying; Ren, Ning; He, Shu-Mei; Wang, Shu-Ping; Zhang, Jian-Jun.

By using conventional solution method, two novel binuclear lanthanide complexes, [Eu(2,6-DMBA)3(5,5′-DM-2,2′-bipy)]2(1), and [Sm(2,6-DMBA)3(5,5′-DM-2,2′-bipy)]2(2) (2,6-DMBA = 2,6-dimethylbenzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimethy-2,2′-bipyridine), have been synthesized at room temperature The two complexes are characterized by element anal., single-crystal X-ray diffraction analyses and powder X-ray diffraction. The single-crystal analyses results indicate they are isomorphous in the monoclinic space group of P2(1)c. The binuclear complexes 1 and 2 are linked to form 1D, 2D supramol. structures through the same C-H···O hydrogen bonding interactions. The thermal decomposition process of these complexes is investigated by TG-DSC/FTIR technol. and the FTIR spectra of the escaped gas also are measured. In addition within a temperature range from 295.15 K to 410.15 K, heat capacities of the title complexes are measured by a DSC instrument, which indicates that no phase transition occurs in this range, and the heat capacity values of the complexes gradually increases with rising temperature Not only that, the thermodn. functions values (HT-H298.15K) and (ST-S298.15K) of the complexes 1 and 2 are calculated according to the fitted polynomial equations and the thermodn. equation. The luminescent behavior of complex 1 is investigated in the solid state. The complex 1 with Eu3+ ion shows strong red luminescence behavior, and the luminescence lifetime and fluorescent quantum yield are calculated to be 1.442 ms and 18.96%.

In some applications, this compound(1762-34-1)HPLC of Formula: 1762-34-1 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Why Are Children Getting Addicted To 1762-34-1

In some applications, this compound(1762-34-1)Formula: C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In general, if the atoms that make up the ring contain heteroatoms, such rings become heterocycles, and organic compounds containing heterocycles are called heterocyclic compounds. An article called Syntheses, reactivity, structures and photocatalytic properties of mononuclear ruthenium(II) complexes supported by 1,4,7-trimethyl-1,4,7-triazacyclononane (Me3tacn) ligands, published in 2021-02-01, which mentions a compound: 1762-34-1, Name is 5,5′-Dimethyl-2,2′-bipyridine, Molecular C12H12N2, Formula: C12H12N2.

Treatment of ruthenium(II) precursor [(Me3tacn)Ru(DMSO)Cl2] (Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane, DMSO = dimethylsulfoxide) (1) with concentrated HCl in the presence of air afforded a ruthenium(III) complex [(Me3tacn)RuCl3·H2O] (2). Reaction of 2, 2,2′-bipyridine or substituted 2,2′-bipyridine, and zinc metal powder in the presence of sodium perchlorate gave the corresponding cationic aquaruthenium(II) complex [(Me3tacn)Ru(R-bpy)(H2O)](ClO4)2 (bpy = 2,2′-bipyridine, R = H, 3; 4,4′-Me2, 4; 5,5′-Me2, 5; 4,4′-di-tBu, 6). The hydrate ligand in complexes 3 and 5 could be substituted by acetonitrile or pyridine forming complexes [(Me3tacn)Ru(5,5′-Me2-bpy)(MeCN)](ClO4)2 (7) and [(Me3tacn)Ru(R-bpy)(py)](ClO4)2 (py = pyridine, R = H (8), R = 5,5′-Me2 (9)), resp. Interaction of [(Me3tacn)Ru(bpy)(H2O)](PF6)2 with phenylacetylene in methanol afforded a ruthenium-carbene complex [(Me3tacn)(bpy)Ru:C(OMe)CH2Ph](PF6)2 (10). All complexes are well characterized by IR, UV/visible, and NMR spectroscopies. The mol. structures of 1, 1·2H2O, 4·2H2O, 7, 8, 9, and 10 were also established by single-crystal X-ray diffraction. The photocatalysis properties of complexes 3, 5, and 6 for H2 evolution by water splitting were also studied.

In some applications, this compound(1762-34-1)Formula: C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

A new application about 1762-34-1

In some applications, this compound(1762-34-1)Electric Literature of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Almenara, Naroa; Barquin, Montserrat; Huertos, Miguel A.; Garralda, Maria A. published the article 《Oxidative Addition of Secondary Phosphine Oxides through Rh(I) Center: Hydrido-Phosphinito-Rh(III) Complexes and their Catalytic Activity in Hydrophosphinylation of Alkynes》. Keywords: rhodium hydrido phosphinito complex preparation hydrophosphinylation catalyst alkyne regioselective; oxidative addition secondary phosphine oxide rhodium complex steric effect; crystal structure mol rhodium hydrido phosphinito complex hydrogen bond.They researched the compound: 5,5′-Dimethyl-2,2′-bipyridine( cas:1762-34-1 ).Electric Literature of C12H12N2. Aromatic heterocyclic compounds can be divided into two categories: single heterocyclic and fused heterocyclic. In addition, there is a lot of other information about this compound (cas:1762-34-1) here.

The reaction of [Rh(μ-Cl)(cod)]2 with diimines, differing in their steric and electronic properties, and with diphenylphosphine oxide leads to the oxidative addition products, hydrido-phosphinito-Rh(III) complexes {Rh(PPh2OH)(PPh2O)(NN)(H)Cl} (1), stabilized by the formation of a hydrogen bonded phosphinous acid-phosphinito quasi-chelate [(PO···HOP)-κ2P]. Exchange of hydride by chloride to afford {Rh(PPh2OH)(PPh2O)(NN)Cl2} (2) occurs in hydrido complexes containing low steric hindrance diimines and is inhibited for complexes containing encumbered diimines. Complexes 1 react with BF3·OEt2 with exchange of the acidic proton by BF2, and transformation of the quasi-chelating PO···HOP into a chelating PO-BF2-OP ligand in {Rh{(PPh2O)2BF2}(NN)(H)Cl} (3). The reaction of [Rh(μ-Cl)(nbd)]2 or [Rh(acac)(nbd)] with diphenylphosphine oxide leads to coordinatively unsaturated nortricyclyl-phosphinito-Rh(III) complexes, {Rh(PPh2OH)(PPh2O)(ntyl)(μ-Cl)}2 (4) or {Rh(PPh2OH)(PPh2O)(ntyl)(acac)} (6), resp. Their reaction with BF3·OEt2 results in the corresponding {Rh{(PPh2O)2BF2}(ntyl)(μ-Cl)}2 (5) or {Rh{(PPh2O)2BF2}(ntyl)(acac)} (7). Some of these new complexes have shown catalytic activity in hydrophosphinylation of alkynes, with {Rh(PPh2OH)(PPh2O)(NN)(H)Cl} containing encumbered NN being efficient and regioselective catalysts in the hydrophosphinylation of phenylacetylene with diphenylphosphine oxide to produce (E)-diphenyl(styryl)phosphine oxide.

In some applications, this compound(1762-34-1)Electric Literature of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Something interesting about 1762-34-1

In some applications, this compound(1762-34-1)Computed Properties of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

In organic chemistry, atoms other than carbon and hydrogen are generally referred to as heteroatoms. The most common heteroatoms are nitrogen, oxygen and sulfur. Now I present to you an article called Construction of lanthanide complexes based on 2,6-dimethylbenzoic acid and 5,5′-dimethyl-2,2′-bipyridine: Supramolecular structures, thermodynamic properties and luminescence, published in 2019-08-31, which mentions a compound: 1762-34-1, mainly applied to dimethylbenzoic acid dimethyl bipyridine lanthanide complex luminescence thermodn property, Computed Properties of C12H12N2.

By using conventional solution method, two novel binuclear lanthanide complexes, [Eu(2,6-DMBA)3(5,5′-DM-2,2′-bipy)]2(1), and [Sm(2,6-DMBA)3(5,5′-DM-2,2′-bipy)]2(2) (2,6-DMBA = 2,6-dimethylbenzoate, 5,5′-DM-2,2′-bipy = 5,5′-dimethy-2,2′-bipyridine), have been synthesized at room temperature The two complexes are characterized by element anal., single-crystal X-ray diffraction analyses and powder X-ray diffraction. The single-crystal analyses results indicate they are isomorphous in the monoclinic space group of P2(1)c. The binuclear complexes 1 and 2 are linked to form 1D, 2D supramol. structures through the same C-H···O hydrogen bonding interactions. The thermal decomposition process of these complexes is investigated by TG-DSC/FTIR technol. and the FTIR spectra of the escaped gas also are measured. In addition within a temperature range from 295.15 K to 410.15 K, heat capacities of the title complexes are measured by a DSC instrument, which indicates that no phase transition occurs in this range, and the heat capacity values of the complexes gradually increases with rising temperature Not only that, the thermodn. functions values (HT-H298.15K) and (ST-S298.15K) of the complexes 1 and 2 are calculated according to the fitted polynomial equations and the thermodn. equation. The luminescent behavior of complex 1 is investigated in the solid state. The complex 1 with Eu3+ ion shows strong red luminescence behavior, and the luminescence lifetime and fluorescent quantum yield are calculated to be 1.442 ms and 18.96%.

In some applications, this compound(1762-34-1)Computed Properties of C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

The influence of catalyst in reaction 1762-34-1

When you point to this article, it is believed that you are also very interested in this compound(1762-34-1)Name: 5,5′-Dimethyl-2,2′-bipyridine and due to space limitations, I can only present the most important information.

The three-dimensional configuration of the ester heterocycle is basically the same as that of the carbocycle. Compound: 5,5′-Dimethyl-2,2′-bipyridine(SMILESS: CC1=CN=C(C=C1)C1=NC=C(C)C=C1,cas:1762-34-1) is researched.HPLC of Formula: 1762-34-1. The article 《Multimode Self-Oscillating Vesicle Transformers》 in relation to this compound, is published in Angewandte Chemie, International Edition. Let’s take a look at the latest research on this compound (cas:1762-34-1).

Engineering synthetic materials that mimic the complex rhythmic oscillatory behavior of living cells is a fundamental challenge in science and technol. Up to now, the reported synthetic model system still cannot compete with nature in oscillatory modes and amplitudes. Presented here is a novel alternating copolymer vesicle that exhibits drastic and multimode shape oscillations in real time, which are controlled by polymer concentrations and driven by the Belousov-Zhabotinsky oscillatory reaction, including swelling/deswelling, twisting/detwisting, stretching/shrinking, fusion/fission, and multiple division. Some of them, especially the fission oscillation, have not been observed before. In addition, the oscillation magnitude with regard to diameter is much larger than that of previously reported self-oscillating vesicles. Such a self-oscillating vesicle transformer would extend the complexity and capacity of membrane deformations in synthetic systems, approaching those of natural cells.

When you point to this article, it is believed that you are also very interested in this compound(1762-34-1)Name: 5,5′-Dimethyl-2,2′-bipyridine and due to space limitations, I can only present the most important information.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Discovery of 1762-34-1

In some applications, this compound(1762-34-1)HPLC of Formula: 1762-34-1 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Epoxy compounds usually have stronger nucleophilic ability, because the alkyl group on the oxygen atom makes the bond angle smaller, which makes the lone pair of electrons react more dissimilarly with the electron-deficient system. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Controlling the Synthesis of Metal-Organic Framework UiO-67 by Tuning Its Kinetic Driving Force.HPLC of Formula: 1762-34-1.

The successful synthesis of metal-organic framework (MOF) compounds relies on an intricate interplay between the components of the synthesis liquor at the given synthesis conditions. The interdependence of modulator, linker, and solvent amounts in the synthesis of the Zr-based MOF, UiO-67, is explored. Probably control of linker vacancy defects in UiO-67 is feasible by tuning the ratios of these components, and such control derives from recognizing the kinetic driving forces during MOF crystal growth. Linker vacancy defects (and modulator mols. occupying linker sites) can be reduced by limiting the solvent amount to maintain a saturated concentration of linker throughout the synthesis. The method enables formation of UiO-67 with an ideal 1:1 ratio between Zr and the 4,4′-biphenyldicarboxylic acid linker, without surplus linker in the mother liquor or addnl. post-synthetic steps, and reduces the amount of DMF solvent to <20% the amount in previously reported procedures. In some applications, this compound(1762-34-1)HPLC of Formula: 1762-34-1 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Something interesting about 1762-34-1

In some applications, this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Slow magnetic relaxation and luminescence properties in neodymium(III)-4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dionato complexes incorporating bipyridyl ligands.

Five new eight-coordinated Nd(III) mononuclear complexes with the formulas [Nd(ntfa)3(EtOH)2] (1), [Nd(ntfa)3(phen)] (2), [Nd(ntfa)3(bipy)] (3), [Nd(ntfa)3(5,5′-Me2bipy)] (4) and [Nd(ntfa)3(4,4′-Mt2bipy)] (5), where ntfa = 4,4,4-trifluoro-1-(naphthalen-2-yl)butane-1,3-dionate, phen = phenanthroline, bipy = 2,2′-dipyridine, 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-dipyridine, and 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-dipyridine, were synthesized and structurally characterized. Magnetic measurements were carried out on complexes 2-5. Dynamic magnetic studies revealed single-mol. magnet (SMM) behavior for complexes 2, 4 and 5 with anisotropy energy barriers and preexponential factors of Ueff = 18 cm-1, τ0 = 2.2 x 10-7 s; Ueff = 31 cm-1, τ0 = 1.0 x 10-9 s and Ueff = 19 cm-1, τ0 = 8.7 x 10-8 s, resp. The ancillary chelating bipyridyl ligands in complexes 2-5 greatly enhance the solid state luminescence emission in the visible and NIR regions through efficient energy transfer from the ligands to the central Nd3+ ion. This study highlights the bifunctionality of the Nd(III) complexes.

In some applications, this compound(1762-34-1)Recommanded Product: 5,5′-Dimethyl-2,2′-bipyridine is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem

Brief introduction of 1762-34-1

In some applications, this compound(1762-34-1)COA of Formula: C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

COA of Formula: C12H12N2. The mechanism of aromatic electrophilic substitution of aromatic heterocycles is consistent with that of benzene. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Synthesis, crystal structure, thermal, luminescent property and antibacterial activity of lanthanide ternary complexes with p-chlorobenzoic acid and 5,5′-dimethyl-2,2′-bipyridine. Author is Zhou, Meng-Xue; Ren, Ning; Zhang, Jian-Jun; Wang, Da-Qi.

Four novel lanthanide coordination complexes, [La(p-ClBA)3(5,5′-DM-2,2′-bipy)H2O]n (1), [Ln(p-ClBA)3(5,5′-DM-2,2′-bipy)H2O]2 (Ln = Sm 2, Eu 3, Gd 4) were obtained from the reaction between p-chlorobenzoic acid (p-ClHBA), 5,5′-dimethyl-2,2′-bipyridine (5,5′-DM-2,2′-bipy) and lanthanide nitrate under solvothermal conditions. Single crystal X-ray diffraction anal. showed that complex 1 is a 1D chain structure, crystallized in the monoclinic system, space group P2(1)/n, and formed a 2D sheet through the C-H···O hydrogen bond interactions. While complexes 2-4 were binuclear unit and crystallizes isomorphically in the triclinic system, space group Pi̅. The binuclear unit were assembled into 1D supramol. structures through the O-H···O hydrogen bond interactions along the a-axis and formed a 2D supramol. structures through the π-π stacking interactions along the b-axis. The thermal anal. of four complexes were studied by TG-DSC/FTIR. The solid state photoluminescent properties of complex 3 were investigated at room temperature Moreover, the antibacterial activities of complexes 1-4 on Candida albicans were studied.

In some applications, this compound(1762-34-1)COA of Formula: C12H12N2 is unique.If you want to know more details about this compound, you can contact with the author or consult more relevant literature.

Reference:
Benzodioxan,
1,4-Benzodioxane | C8H8O2 – PubChem