Computed Properties of C12H12N2. So far, in addition to halogen atoms, other non-metallic atoms can become part of the aromatic heterocycle, and the target ring system is still aromatic. Compound: 5,5′-Dimethyl-2,2′-bipyridine, is researched, Molecular C12H12N2, CAS is 1762-34-1, about Theoretical exploration of 2,2′-bipyridines as electro-active compounds in flow batteries.
Compounds from the 2,2′-bipyridine mol. family were investigated for use as redox-active materials in organic flow batteries. For 156 2,2′-bipyridine derivatives reported in the academic literature, we calculated the redox potential, the pKa for the second deprotonation reaction, and the solubility in aqueous solutions Using exptl. data on a small subset of derivatives, we were able to calibrate our calculations We find that functionalization with electron-withdrawing groups leads to an increase of the redox potential and to an increase of the mol. acidity (as expressed in a reduction of the pKa value for the second deprotonation step). Furthermore, calculations of solubility in water indicate that some of the studied derivatives have adequate solubility for flow battery applications. Based on an anal. of the physico-chem. properties of the 156 studied compounds, we down-select five mols. with carbonyl- and nitro-based functional groups, whose parameters are especially promising for potential applications as neg. redox-active materials in organic flow batteries.
Although many compounds look similar to this compound(1762-34-1)Computed Properties of C12H12N2, numerous studies have shown that this compound(SMILES:CC1=CN=C(C=C1)C1=NC=C(C)C=C1), has unique advantages. If you want to know more about similar compounds, you can read my other articles.